Distinguished Scholars

Jiafang Li

Title: Professor & Vice Dean

Tel: 010-81383363

Department: Department of Optical Physics

E-mail: jiafangli@bit.edu.cn

Address: Room B-210, Science Building, Liangxiang Campus of BIT, Fangshan District, Beijing

Education

2005/08 - 2009/02, PhD in Micro-Photonics, Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Australia; Supervisor: Prof. Min Gu
2002/09 - 2005/07, M.Sc. in Optics, Institute of Physics, Nankai University, China; Supervisor: Prof. Kecheng Lv
1998/09 - 2002/07, B.Sc. in Applied Optics, Institute of Physics, Nankai University, China

Professional experience

2018/12 - present, Professor (tenure), School of Physics, Beijing Institute of Technology, China
2017/09 - 2017/12, Visiting Scholar, Nanophotonics and 3D Nanomanufacturing Laboratory, Massachusetts Institute of Technology, United States; Collaborator: Prof. Nicholas X. Fang
2012/08 - 2018/12, Associate Professor, Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, China
2009/07 - 2012/08, Assistant Professor, Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, China
2009/03 - 2009/06, Research Assistant, Centre for Micro-Photonics, Swinburne University of Technology, Australia

Research Interests

3D micro-/nano-fabrications and applications
1)3D micro-/nano-fabrication technology and optoelectronic device with Nano-kirigami
2)Development and application of 3D direct laser writing technology
Plasmonic nanostructures: optical physics and device applications
1)Surface plasmon amplification with optical gain media
2)Emission control based on gold nanorods and its applications
3)Engineering and enhancing nonlinearities from metallic nanostructures
Physics and applications of photonic crystals
1)The fabrication of 3D photonic crystals and its application on emission control of quantum dots
2)Photonic crystal based detectors for NIR

Publications

1. Shanshan Chen, Chang-Yin Ji, Yu Han, Xing Liu, Yongtian Wang, Juan Liu, and Jiafang Li*, “Plasmonic diastereoisomer arrays with reversed circular dichroism simply controlled by deformation height”, APL Photonics 7, 056102 (2022).

2. Shanshan Chen#, Zhiguang Liu#, Huifeng Du#, Chengchun Tang#, Chang-Yin Ji, Baogang Quan, Ruhao Pan, Lechen Yang, Xinhao Li, Changzhi Gu, Xiangdong Zhang, Yugui Yao, Junjie Li*, Nicholas X. Fang*, and Jiafang Li*, “Electromechanically reconfigurable optical nano-kirigami”, Nature Communications 12, 1299 (2021).

3. Chang-Yin Ji, Shanshan Chen, Yu Han, Xing Liu, Juan Liu, Jiafang Li*, and Yugui Yao*, “Artificial Propeller Chirality and Counterintuitive Reversal of Circular Dichroism in Twisted Meta-molecules”, Nano Letters 21, 6828-6834 (2021).

4. Xia Li,# Chang-Yin Ji,#,* Shanshan Chen, Yu Han, Juan Liu, and Jiafang Li*, “Phase enabled circular dichroism reversal in twisted bi-chiral propeller metamolecule arrays”, Advanced Optical Materials 9(24), 2101191 (2021).

5. Yu Han, Shanshan Chen, Changyin Ji, Xing Liu, Yongtian Wang, Juan Liu, and Jiafang Li*, "Reprogrammable optical metasurfaces by electromechanical reconfiguration," Opt. Express 29, 30751-30760 (2021)

6. Z. G. Liu, Y. Xu, C. Y. Ji, S. S. Chen, X. P. Li, X. D. Zhang, Y. G. Yao, and J. Li*, "Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces," Advanced Materials 32, 1907077 (2020).

7. S. Chen, J. Chen, X. Zhang, Z.-Y. Li, and J. Li*, "Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”," Light: Science & Applications 9, 75 (2020).

8. Y. Tang, Z. Liu, J. Deng, K. Li, J. Li*, and G. Li, "Nano-Kirigami Metasurface with Giant Nonlinear Optical Circular Dichroism," Laser & Photonics Reviews 14, 2000085 (2020).

9. S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li*, "Reconfigurable nano-kirigami metasurfaces by pneumatic pressure," Photonics Research 8, 1177-1182 (2020).

10. Yu Han, Zhiguang Liu, Shanshan Chen, Juan Liu, Yongtian Wang, and Jiafang Li,* "Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation," Photonics Research 8, 1506-1511 (2020).

11. X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, and L. Lu, "Dirac-vortex topological cavities," Nature Nanotechnology 15, 1012-1018 (2020).

12. T. Wu, W. Zhang, H. Zhang, S. Hou, G. Chen, R. Liu, C. Lu, J. Li, R. Wang, P. Duan, J. Li, B. Wang, L. Shi, J. Zi, and X. Zhang, "Vector Exceptional Points with Strong Superchiral Fields," Physics Review Letters 124, 083901 (2020).

13. Y. Yang, L. Wu, Y. Liu, D. Xie, Z. Jin, J. Li, G. Hu, and C.-W. Qiu, "Deuterogenic Plasmonic Vortices," Nano Letters 20, 6774-6779 (2020).

14. 陈珊珊#, 刘幸#, 刘之光#, 李家方*, “基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用”, 物理学报 68, 248101 (2019).

15. S. Wang, C. He, J. Tang, X. Lu, C. Shen, H. Yu, L. Du, J. Li, R. Yang, D. Shi, and G. Zhang, "New Floating Gate Memory with Excellent Retention Characteristics," Advanced Electronic Materials 5, 1800726 (2019).

16. Zhiguang Liu, Huifeng Du, Jiafang Li,#,* Ling Lu, Zhi-Yuan Li*, and Nicholas X. Fang*, "Nano-kirigami with giant optical chirality", Science Advances 4 , eaat4436 (2018).

17. Jiafang Li* and Zhiguang Liu, “Focused-ion-beam based nano-kirigami: from art to photonics”, Nanophotonics 7, 1637–1650 (2018).

18. Zhiguang Liu, Huifeng Du, Zhi-Yuan Li*, Nicholas X. Fang*, and Jiafang Li,* "Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation", APL Photonics 3, 100803 (2018).

19. Ximin Tian, Zhiguang Liu, Han Lin, Baohua Jia, Zhi-Yuan Li* and Jiafang Li,* “Five-fold plasmonic Fano resonances with giant bisignate circular dichroism”, Nanoscale 10, 16630-16637 (2018).

20. Zhiguang Liu, Jiafang Li,* Zhe Liu, Wuxia Li, Junjie Li, Changzhi Gu and Zhi-Yuan Li,* " Fano resonance Rabi splitting of surface plasmons”, Scientific Reports 7, 8010 (2017).

21. Jiafang Li,, Jing Liu, Ximin Tian and Z.-Y. Li,* “Plasmonic Particles with Unique Optical Interaction and Mechanical Motion Properties”, Particle & Particle Systems Characterization 34, 1600380 (2017).

22. Xiaomei Gao, Jiafang Li,* Zhenzhong Hao, Fang Bo,* Chenyang Hu, Jie Wang, Zhiguang Liu, Zhi-Yuan Li,Guoquan Zhang, and Jingjun Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate”, Journal of Applied Physics 121, 064502 (2017).

23. Zhiguang Liu, Zhe Liu, Jiafang Li,* Wuxia Li, Junjie Li, Changzhi Gu and Zhi-Yuan Li,* "3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials, Scientific Reports 6, 27817 (2016).

24. Yang Yang, Zhe Shi, Jiafang Li,* and Zhi-Yuan Li, "Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam", Photonics Research 4, 65-69 (2016).

25. Bao-Qin Chen, Chao Zhang, Jiafang Li, Zhi-Yuan Li* and Younan Xia, "On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap", Nanoscale 8, 15730 (2016).

26. Hongming Shen, Guowei Lu, Zhengmin Cao, Yingbo He, Yuqing Cheng, Jiafang Li, Zhi-Yuan Li, Qihuang Gong, Directionally enhanced probe for side-illumination Tip enhanced spectroscopy. J. Raman Spectrosc. 47, 1194–1199 (2016).

27. Ajuan Cui,# Zhe Liu,# Jiafang Li,# Tiehan H. Shen, Xiaoxiang Xia, Zhiyuan Li, Zhijie Gong, Hongqiang Li, Benli Wang, Junjie Li, Haifang Yang, Wuxia Li, and Changzhi Gu, “Directly Patterned Substrate-free Plasmonic ‘Nanograter’ Structures with Unusual Fano Resonances”, Light: Science & Applications 4, e308 (2015).

28. Jiajia Mu, Zhiguang Liu, Jiafang Li,* Tingting Hao, Yujin Wang, Shengsheng Sun, Zhi-Yuan Li, Junjie Li, Wuxia Li* and Changzhi Gu, “Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing”, Optics Express 23, 22564-22571 (2015).

29. Jiafang Li,* Jiajia Mu, Benli Wang, Wei Ding, Ju Liu, Honglian Guo, Wuxia Li, Changzhi Gu and Zhi-Yuan Li,* "Direct laser writing of symmetry-broken conical tapers for polarization-insensitive three-dimensional plasmonic focusing," invited original paper, Laser & Photonics Review 8, 602-609 (2014).

30. Jiajia Mu, Jiafang Li,* Wuxia Li, Shengsheng Sun, Weijie Sun, and Changzhi Gu, “Direct laser writing of symmetry broken nanocorrals and their applications in SERS spectroscopy”, Applied Physics B 117, 121-125 (2014).

31. Jiafang Li* and Zhi-Yuan Li,* “Manipulation of plasmonic wavefront and light-matter interaction in metallic nanostructures:A brief review [invited]”, Chinese Physics B 23, 047305 (2014).

32. Jiafang Li,* Honglian Guo, and Zhi-Yuan Li,* "Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]," Photonics Research 1, 28-41 (2013).

33. Siyun Liu, Jiafang Li,* and Zhi-Yuan Li,* "Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film ", Advanced Optical Materials 1, 227-231 (2013).

34. S.-Y. Liu, L. Huang, Jiafang Li,*, C. Wang, Q. Li, H.-X. Xu, H.-L. Guo, Z.-M. Meng, Z. Shi, and Z.-Y. Li,* "Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods," The Journal of Physical Chemistry C 117, 10636-10642 (2013).

35. C. He, J. Li, X. Wu, P. Chen, J. Zhao, K. Yin, M. Cheng, W. Yang, G. Xie, D. Wang, D. Liu, R. Yang, D. Shi, Z. Li, L. Sun, and G. Zhang, "Tunable Electroluminescence in Planar Graphene/SiO2 Memristors," Advanced Materials 25, 5593-5598 (2013).

36. Lin Ling, Lu Huang, Jin-Xin Fu, Hong-Lian Guo,* Jiafang Li, H. Daniel Ou-yang, and Zhi-Yuan Li*, “The properties of gold nanospheres studied with dark field optical trapping”, Optics Express 21, 6618-6624 (2013).

37. Yu-Hui Chen, Jiafang Li*, Ming-Liang Ren, and Zhi-Yuan Li*, "Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response", Small 8, 1355-1359 (2012).

38. Lu Huang, Honglian Guo, Jiafang Li, Lin Ling, Baohua Feng, and Zhi-Yuan Li, "Optical trapping of gold nanoparticles by cylindrical vector beam", Optics Letters 37, 1694-1696 (2012).

39. Lin Ling, Hong-Lian Guo, Xiao-Lan Zhong, Lu Huang, Jia-Fang Li, Lin Gan and Zhi-Yuan Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control”, Nanotechnology 23, 215302 (2012).

40. Yu-Hui Chen, Jiafang Li,* Ming-Liang Ren, Ben-Li Wang, Jin-Xin Fu, Si-Yun Liu and Zhi-Yuan Li,* “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces”, Applied Physics Letters 98, 261912 (2011).

41. Si-Yun Liu, Jiafang Li*, Fei Zhou, Lin Gan, and Zhi-Yuan Li,* "Efficient surface plasmon amplification from gain-assisted gold nanorods," Optics Letters 36, 1296-1298 (2011).

42. J. Li, S. Liu, Y. Liu, F. Zhou, Z.-Y. Li, Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods, Applied Physics Letters 96, 263103 (2010).

43. J. Li, M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Optics Express 18, 4491-4498 (2010).

44. J. Li, M. Hossain, B. Jia, and M. Gu, “Rectangular-cavity resonances enhanced absorption in metallic-nanoshelled 2D rod arrays and 3D photonic crystals,” New Journal of Physics 12, 043012(2010). [IPF: 3.312]

45. M. Gu, B. Jia, J. Li and M. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser & Photonics Reviews 4, 414-431(2010).

46. B. Jia, D. Buso, J. Embden, J. Li, and M. Gu, “Highly nonlinear quantum dot doped nanocomposites for functional three-dimensional structures generated by two-photon polymerization,” Advanced Materials 22, 2463-2467 (2010).

47. J. Li, B. Jia and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal Treatment,” Optics Express 16, 20073-20080 (2008).

48. J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Advanced Materials 19, 3276-3280 (2007).

49. J. Li, B. Jia, G. Zhou and M. Gu, “Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal,” Applied Physics Letters 91, 254101 (2007).

50. J. Li, B. Jia, G. Zhou and M. Gu, “Fabrication of three-dimensional photonic crystals in a quantum dot composite material,” Optics Express 14, 10740-10745 (2006).


招生信息

1) Open for 2~3 graduate students per year (Master student, PhD student, Joint PhD student, etc.), with background in optics or physics.
2) Open for 1-2 Post-doctoral positions, with experience in optics or nanofabrication experiences.
3) Open for short-term visit and any form of collaborations.