Faculty Profiles

Faculty Profiles

Jiangwei Shang

Title: Professor

Tel:

Department: Theoretical Physics

E-mail: jiangwei.shang[AT]bit.edu.cn

Address: Central Teaching Building 710, Beijing Institute of Technology, Haidian District, Beijing, China; Science Building A414, Beijing Institute of Technology, Fangshan District, Beijing, China

Education

2010.07 – 2014.02 Centre for Quantum Technologies (CQT), National University of Singapore, Singapore, Ph.D. in Physics; Advisor: Prof. Berthold-Georg Englert

2008.08 – 2008.12 Department of Physics, University of California, Santa Barbara (UCSB), CA, USA, Academic Exchange

2006.08 – 2010.06 National University of Singapore (NUS), Singapore, B.Sc. (First Class Honours) in Physics and Mathematics (Minor)

Professional experience

2022.07 – Present School of Physics, Beijing Institute of Technology (BIT), Professor

2018.01 – 2022.06 School of Physics, Beijing Institute of Technology (BIT), Associate Professor

2016.11 – 2017.12 Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Siegen, Germany, Postdoctoral Fellow; Advisor: Prof. Dr. Otfried Gühne

2014.02 – 2016.10 Centre for Quantum Technologies, National University of Singapore, Singapore, Research Fellow; Advisor: Prof. Berthold-Georg Englert

Research Interests

Quantum Information and Computation, Quantum State Tomography, Quantum Verification, Quantum Entanglement, Quantum Optics, Temporal Correlations, Direct Measurement, etc.

Publications

Google Scholar: https://scholar.google.com/citations?hl=en&user=Ur3D0GIAAAAJ

Selected recent publications:

[1] Y. Li and J. Shang, “Geometric mean of bipartite concurrences as a genuine multipartite entnaglement measure,” Phys. Rev. Research 4, 023059 (2022).

[2] X. Yan, Y.-C. Liu, and J. Shang, “Operational detection of entanglement via quantum designs,” Ann. Phys. (Berlin) 534, 2100594 (2022).

[3] X.-D. Yu, J. Shang, and O. Gühne, “Statistical methods for quantum state verification and fidelity estimation,” Adv. Quantum Technol. 5, 2100126 (2022). (Invited Review)

[4] Q. Zeng, J. Shang, H. C. Nguyen, and X. Zhang, “Reliable experimental certification of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Research 4, 013151 (2022).

[5] R.-Q. Zhang, Z. Hou, J.-F. Tang, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Efficient experimental verification of quantum gates with local operations,” Phys. Rev. Lett. 128, 020502 (2022). (Editors' Suggestion)

[6] Y.-C. Liu, Y. Li, J. Shang, and X. Zhang, “Verification of arbitrary entangled states with homogeneous local measurements,” arXiv:2208.01083.

[7] W. Li, R. Han, J. Shang, H. K. Ng, and B.-G. Englert, “Sequentially constrained Monte Carlo sampler for quantum states,” arXiv:2109.14215.

[8] Y.-C. Liu, J. Shang, and X. Zhang, “Efficient verification of entangled continous-variable quantum states with local measurements,” Phys. Rev. Research 3, L042004 (2021). (Letter)

[9] Y.-C. Liu, J. Shang, R. Han, and X. Zhang, “Universally optimal verification of entangled states with nondemolition measurements,” Phys. Rev. Lett. 126, 090504 (2021).

[10] Z. Li, Y.-G. Han, H.-F. Sun, J. Shang, and H. Zhu, “Verification of phased Dicke states,” Phys. Rev. A 103, 022601 (2021).

[11] Y.-C. Liu, J. Shang, X.-D. Yu, and X. Zhang, “Efficient verification of quantum processes,” Phys. Rev. A 101, 042315 (2020).

[12] J.-F. Tang, Z. Hou, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Experimental optimal orienteering via parallel and antiparallel spins,” Phys. Rev. Lett. 124, 060502 (2020).

[13] X.-D. Yu, J. Shang, and O. Gühne, “Optimal verification of general bipartite pure states,” npj Quantum Inf. 5, 112 (2019).

[14] Y.-C. Liu, X.-D. Yu, J. Shang, H. Zhu, and X. Zhang, “Efficient verification of Dicke states,” Phys. Rev. Applied 12, 044020 (2019).

[15] J. Y. Sim, J. Shang, H. K. Ng, and B.-G. Englert, “Proper error bars for self-calibrating quantum tomography,” Phys. Rev. A 100, 022333 (2019).

[16] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, “Quantifying quantum resources with conic programming,” Phys. Rev. Lett. 122, 130404 (2019).

[17] G. Sentís, J. N. Greiner, J. Shang, J. Siewert, and M. Kleinmann, “Bound entangled states fit for robust experimental verification,” Quantum 2, 113 (2018).

[18] J. Shang, A. Asadian, H. Zhu, and O. Gühne, “Enhanced entanglement criterion via symmetric informationally complete measurements,” Phys. Rev. A 98, 022309 (2018). (Editors' Suggestion)

[19] J. Shang and O. Gühne, “Convex optimization over classes of multiparticle entanglement,” Phys. Rev. Lett. 120, 050506 (2018).

[20] Z. Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D. Wu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Deterministic realization of  collective measurements via photonic quantum walks,” Nature Commun. 9, 1414 (2018).

[21] J. Shang, Z. Zhang, and H. K. Ng, “Superfast maximum-likelihood reconstruction for quantum tomography,” Phys. Rev. A 95, 062336 (2017).

Positions

Undergraduates and graduates interested in quantum information and computation are welcome to join the group. We expect to recruit 1 or 2 master/PhD students per year. Academic visits from home and abroad are more than welcome.