当前位置: 江兆潭

正高/准聘教授/特别研究员/长聘教授

姓名:江兆潭
所在学科:物理学院
职称:教授、博士生导师
联系电话:010-68914027
E-mail:jiangzhaotan@bit.edu.cn
通信地址:

个人简历

1993-1997年山东师范大学本科。

1997-2000年山东师范大学硕士。

2000-2003年中国科学院半导体研究所博士。

2003-2005年中国科学院物理研究所博士后。

工作经历

2012年-今,北京理工大学,教授。

2007年-2012年,北京理工大学,副教授。

2005年-2007年,北京理工大学,讲师(副教授待遇)。

2011年-2019年,北京理工大学物理学院,院长助理、副院长。

2010年-今,北京理工大学,博士生导师。

2006年-今,北京理工大学,硕士生导师。

2008年9月-10月,意大利国际理论物理中心访问学者。

2009年9月-2010年6月,美国Oklahoma State University访问学者。

科研方向

长期从事介观系统、半导体纳米系统、石墨烯系统、磷烯系统等的量子态、输运性质、相干特性等的研究,研究手段主要为Mode-matching方法、Modified rate equation方法、Greens function方法、紧束缚方法和第一性原理计算等方法。不断拓展研究方向,开展校企产学研研究,主要研究石墨烯复合材料的热传导机理与调控,建立宏观石墨烯复合材料的导热模型与理论方法,为石墨烯复合材料的制备、加工、应用提供指导和参考。

目前开展石墨烯、磷烯、半导体、二维材料等低维纳米结构中的导电、导热和光电等性质研究,开展新现象、新效应、新应用等研究,研发新原理性器件,设计和开发新的科学研究软件。

  瞄准国家重大需求,研究“集成电路散热” 和“碳达峰、碳中和”中的热科学及相关问题。

学术成就

教学情况

多年来承担过多门研究生课程和本科生课程的授课任务,包括《凝聚态理论》(或《固体理论》)、《高等量子力学》、《高等电动力学》、《固体物理》、《Fortran语言》、《理论力学》等课程。目前正在主讲的课程有《凝聚态理论》(入选校级研究生精品课程)和《理论力学》。

获奖情况

曾获中国科学院院长奖学金优秀奖、中国科学院优秀博士学位论文,获全国百篇优秀博士学位论文提名,入选2008年教育部新世纪优秀人才资助支持计划。多次荣获校级优秀班主任、校级三育人先进个人、校级师德先进个人、校级优秀研究生毕业论文指导教师等,两次获得校级教学教育成果二等奖。入选校级优秀青年教师发展计划,入选校级杰出中青年教师发展计划等。

实验室建设

推动建立了北理工-山东沃烯校企联合实验室“低维多尺度热物理实验室”,聚焦“从0到1”的工作。实验室实现强强联合,建成价值200万的科学计算工作站,为科研工作提供强有力的支持和保障。

目前“低维多尺度热物理实验室”将主要开展三方面研究:(一)导热问题。21世纪是信息化的时代,大数据、云计算、5G技术、量子信息等等依赖于器件高密度集成的超大规模集成电路,其导热和散热在系统热管理中起着决定性作用。研究材料的导热具有重要的战略意义,决定着下一代信息技术的成功实施与应用。(二)热电转换。能源是人类面临的严峻挑战。实际能源利用率只有1/3,另外2/3的能量以热能形式被耗散,开展热电转换以利用废热具有诱人的开发前景。(三)解决企业研发中面临的瓶颈问题。响应国家号召,校企联合,解决企业面临的关键问题,快速转化科研成果。

实验室将在服务器上根据需要部署Quantum ATK、Quantum ESPRESSO、Phonopy、LAMMPS、BolzTrap、VASP、Materials Studio等科学计算软件,开展特色鲜明、创新能力强、面向国家战略和企业需求的研究工作。

目前实验室关注专利申请,已有18项发明专利和实用新型专利授权,另有3项专利在审。

承担基金情况

近年来主持完成国家自然科学基金等五项。目前在研项目主要有国家自然科学基金面上项目、横向项目、校企合作项目等,满足研究生培养和科研工作等需求。

学术成就

截至2021年3月已在Phys. Rev. Lett.、Nature Communications、Phys. Rev. B等国内外物理学期刊发表论文约80余篇,包括1篇Phys. Rev. Lett.(一作),8篇Phys. Rev. B(6篇一作,1篇通讯),3篇J. of Phys.: Condensed Matter(一作)和2篇 J. Appl. Phys.(1篇一作,1篇通讯),1篇J. Hazardous Materials(通讯,影响因子:9.038, 一区)等。其代表性论文有:

1) Y. H. Ren, Q. Z. Han, Y. H. Zhao, H. Wen, and Z. T. Jiang (通讯作者), The exploration of metal-free catalyst g-C3N4 for NO degradation,J. Hazardous Materials 404, 124153 (2021). [影响因子:9.038, 一区]

2) H. L. Shi, M. R. Song, J. Yang, Q. Z. Han, Y. H. Ren, and Z. T. Jiang (通讯作者), Thermal conductivity and interfacial thermal conductivity of complex graphene nanoribbons without and with polyethylene molecules, Int. J. Therm. Sci. (2021). (In publication)

3) Y. H. Ren, Q. Z. Han, Q. Z. Su, J. Yang, Y. H. Zhao, H. Wen, and Z. T. Jiang (通讯作者), Effects of 4d transition metals doping on the photocatalytic activities of anatase TiO2 (101) surface, Int. J. Quantum Chem. e26683 (2021).

4) M. R. Song, H. L. Shi, Z. T. Jiang (通讯作者), J. Yang, Q. Z. Han, Universalities of anomalous properties in electron transport through different Z-shaped phosphorene nanoribbon devices, Modern Physics Letters B (Accepted, 2021).

5) W. J. Yan, H. R. Fuh, Y. H. Lv, K. Q. Chen, T. Tsai, Y. Wu, T. Shieh, K. Hung, J. Li, D. Zhang, C. Coileáin, S. Arora, Z. Wang, Z. T. Jiang, C. Chang, and H. C. Wu, Giant Gauge factor of Van der Waals material based strain sensors, Nature Communications 12, 2018 (2021).(一区)

6) Y. Ran, H. Lu, S. Zhao, Q. Guo, C. Gao, Z. T. Jiang, Z. Wang, Stoichiometry-modulated dual epsilon-near-zero characteristics of niobium nitride films, Applied Surface Science 537, 147981 (2021).

7) W. J. Yan, C. Z. Lv, D. Zhang, Y. H. Chen, L. Zhang, C. O. Coileain, Z. Wang, Z. T. Jiang, K. M. Huang, C. R. Chang, and H. C. Wu, Enhanced NO2 Sensitivity in Schottky-Contacted n-Type SnS2 Gas Sensors, ACS Applied Materials and Interfaces, 12, 26746 (2020).

8) H. L. Shi, M. R. Song, Z. T. Jiang (通讯作者), Y. H. Ren, and Q. Z. Han, Influence of edge passivation on the transport properties of the zigzag phosphorene nanoribbons, Physics Letters A 384, 126486 (2020).

9) M. R. Song, H. L. Shi, Z. T. Jiang (通讯作者), Y. H. Ren, and Q. Z. Han, Transport properties of Z-shaped phosphorene nanoribbon devices, Modern Physics Letters B 34, 2050229 (2020).

10) S. J. Zhao, Y. Zhao, Y. J. Ran, H. P. Lu, Q. Guo, C. Gao, Y. F. Zhao, W. J. Yan, Z. T. Jiang, H. C. Wu, D. Zhang, and Z. Wang, Surface enhanced Raman scattering on ion-beam-deposited TiNx/Si substrates, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 472, 24-31 (2020).

11) L. L. Chen, Y. J. Ran, Z. T. Jiang, Y. L. Li, and Z. Wang, Structural, Compositional, and Plasmonic Characteristics of Ti-Zr Ternary Nitride Thin Films Tuned by the Nitrogen Flow Ratio in Magnetron Sputtering, Nanomaterials 10(5), 829 (2020).

12) H. P. Lu, Y. J. Ran, S. J. Zhao, Q. Guo, C. Gao, Z. T. Jiang, F. Yang, and Z. Wang, Modulation of the plasmonic characteristics of Ti-Zr ternary nitride thin films by assisting ions, Applied Surface Science, 505, 144579 (2020).

13) J. H. Gao, Y. H. Ren, Q. Z. Han, H. Wen, Z. T. Jiang (通讯作者), Influences of MgO(001) and TiO2(101) supports on the structures and properties of Au nanoclusters, Catalysts, 10(1), 16 (2020).

14) H. P. Lu, Y. J. Ran, S. J. Zhao, L. W. Jia, C. Gao, Z. T. Jiang, F. Yang, and Z. Wang, Effects of assisting ions on the structural and plasmonic properties of ZrNx thin films, Journal of Physics D: Applied Physics, 52, 245102 (2019).

15) Y. J. Ran, H. P. Lu, S. J. Zhao, L. W. Jia, Q. Guo, C. Gao, Z. T. Jiang, and Z. Wang, Structural and plasmonic properties of TixZr1−xNy ternary nitride thin films. Applied Surface Science, 476, 560-568 (2019).

16) Z. T. Jiang, F. X. Liang, Z. T. Lv, Y. H. Ren, and Q. Z. Han, Symmetry effect on the mechanism of the optical absorption of phosphorene quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 107, 137-141 (2019).

17) Y. J Ran, H. P. Lu, S. J. Zhao, L. W. Jia, Y. L. Li, Z. T. Jiang, and Z. Wang, Effects of substrate bias and temperature on the structure and dielectric properties of TixZr1-xNy ternary nitride thin films, Surface and Coatings Technology, 359, 258-264 (2019).

18) X. X. Suo, S. J. Zhao, Y. J. Ran, H. N. Liu, Z. T. Jiang, and Z. Wang, Effects of oxygen/argon pressure ratio on the structural and optical properties of Mn-doped ZnO thin films prepared by magnetron pulsed co-sputtering, Surface and Coatings Technology, 357, 978-983 (2019).

19) W. J. Yan, D. Y. Chen, H. R. Fuh, Y, L, Li, D. Zhang, H. J. Liu, G. Wu, L. Zhang, X. K. Ren, J. Cho, M. Choi, B. S. Chun, C. O. Coileain, H. J. Xu, Z. Wang, Z. T. Jiang, C. R. Chang, and H. C. Wu, Photo-enhanced gas sensing of SnS2 with nanoscale defects, RSC Advance 9, 626-635 (2019).

20) L. W. Jia, H. P. Lu, Y. J. Ran, S. J. Zhao, H. N. Liu, Z. T. Jiang, and Z. Wang, Structural and dielectric properties of ion beam deposited titanium oxynitride thin films, Journal of Materials Science, 54, 1452-1461 (2019).

21) Z. T. Jiang and Z. T. Lv, Influences of strains on the formation of the quasi-Dirac cone and the Landau levels in black phosphorus, Physics Letters A 382, 3423-3428 (2018).

22) H. N. Liu, Y. J. Ran, L. W. Jia, H. P. Lu, S. J. Zhao, H. K. Zhao, Y. L. Li, Z. T. Jiang, and Z. Wang, Structural and optical properties of Cu-N codoped ZnO thin films deposited by magnetron cosputtering, Journal of Materials Science: Materials in Electronics, 29, 9901-9907 (2018).

23) F. X. Liang, Y. H. Ren, X. D. Zhang, and Z. T. Jiang (通讯作者), Electronic properties and optical absorption of a phosphorene quantum dot, Journal of Applied Physics 123,125109 (2018).

24) H. N. Liu, X. X. Suo, L. A. Zhang, D. Zhang, H. C. Wu, H. K. Zhao, Z. T. Jiang, Y. L. Li, and Z. Wang, Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures, Chinese Physics B 27, 027104 (2018).

25) Y. H. Li, Z. X. Chen, Z. G. Lu, Q. H. Yang, L. Y. Liu, Z. T. Jiang, L. Q. Zhang, X. Zhang, and H. Qing, "Cell-addictive" dual-target traceable nanodrug for Parkinson's disease treatment via flotillins pathway, Theranostics, 8, 5469 (2018).

26) Z. T. Lv, J. H. Gao, X. D. Zhang, Z. T. Jiang(通讯作者), Coupling and manipulation of edge states in multilayer phosphorene nanoribbons, Physica E: Low-dimensional Systems and Nanostructures, 94, 59 (2017).

27) Z. T. Jiang, Z. T. Lv, and X. D. Zhang, Electromechanical field effect transistors based on multilayer phosphorene nanoribbons, Physics Letters A 381, 1962-1966 (2017).

28) L. A. Zhang, H. N. Liu, X. X. Suo, S. Tong, Y. L. Li, Z. T. Jiang, and Z. Wang, Ion beam modification of plasmonic titanium nitride thin films, Journal of Materials Science, 52, 6442-6448 (2017).

29) Z. T. Jiang, S. Li, Z. T. Lv, and X. D. Zhang, Energy spectrums of bilayer triangular phosphorene quantum dots and antidots, AIP Advances, 7(4), 045122 (2017).

30) Q. Z. Su, Q. Z. Han, J. H. Gao, H. Wen, and Z. T. Jiang, Modification of the photocatalytic properties of anatase TiO2 (101) surface by doping transition metals, Acta Physica Sinica, 66, 067101 (2017).

31) Z. T. Jiang, F. X. Liang, and X. D. Zhang, A comparative study on the edge states in phosphorene quantum dots and rings, Physics Letters A 381, 373-378 (2017).

32) L. A. Zhang, H. N. Liu, X. X. Suo, S. Tong, Y. L. Li, Z. T. Jiang, and Z. Wang, Plasmonic properties of titanium nitride thin films prepared by ion beam assisted deposition, Materials Letters, 185, 295-298 (2016).

33) Z. T. Jiang and S. Li, Quantum transport through a quantum dot structure side coupled with many quantum-dot and Majorana-bound-state pairs, AIP Advances 6, 125122 (2016).

34) Z. T. Jiang, Z. T. Lv, and X. D. Zhang, Energy spectrum of pristine and compressed black phosphorus in the presence of a magnetic field, Physical Review B 94, 115118 (2016).

35) P. P. Zhou, H. N. Liu, L. A. Zhang, X. X. Suo, Z. S. Liang, Y. Q. Liu, Y. L. Li, Z. T. Jiang, and Z. Wang, Study of substrate temperature and copper doping effects on structural, electrical and optical properties of Cu-doped and undoped ZnO thin films, Journal of Materials Science: Materials in Electronics, 27(8), 7822-7828 (2016).

36) Z. T. Jiang and C. C. Zhong, Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states, Chinese Physics B 25, 067302 (2016).

37) Z. T. Jiang, Z. Y. Cao, and C. C. Zhong, Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States, Communications in Theoretical Physics 65, 622-628 (2016).

38) J. Zhao, Y. L. Deng, Z. T. Jiang, and H. Qing, G Protein-Coupled Receptors (GPCRs) in Alzheimer's Disease: A Focus on BACE1 Related GPCRs, Frontiers in Aging Neuroscience 8, 58 (2016).

39) Q. Z. Han, J. L. Zhao, Z. T. Jiang, and H. Wen, Quantum Research on the Aromaticity of the Polycyclic Aromatic Hydrocarbons, Energy and Environment Focus, 4, 145-148 (2015).

40) F. X. Liang(博士生), Z. T. Jiang(通讯作者), Z. T. Lv, H. Y. Zhang, and S. Li, Energy levels of double triangular graphene quantum dots, Journal Applied Physics,116, 123706 (2014).

41) Z. T. Jiang, S. Li, Z. T. Lv, and G. F. Zhang, Quantum transport through a rigidly connected double quantum-dot shuttle, Communications in Theoretical Physics 61, 536-544 (2014).

42) J. L. Zhao, Q. Z. Han, Z. T. Jiang, and H. Wen, The quantum research on the nucleophilic reaction activity of polycyclic aromatic hydrocarbons, Advance Materials Research, 881, 173 (2014).

43) Q. L. Dong, J. Yang, Z. T. Jiang, Z. M. Sheng, and J. Zhang, The energy band structures of the warm dense plasmas with micro-structures inherited from original carbon nanotubes, EPJ Web of Conferences, 59, 16003 (2013).

44) Z. T. Jiang, C. L. Yu, and Q. L. Dong, Quasibound states in graphene quantum-dot nanostructures generated by concentric potential barrier rings, Chinese Physics B 21, 027303 (2012).

45) Q. F. Sun, Z. T. Jiang, Y. Yu, and X.C. Xie, Spin superconductor in ferromagnetic graphene, Physical Review B 84, 214501 (2011).

46) G. F. Zhang, H. Fan, A.L. Ji, Z.T. Jiang, A. Abliz, and W.M. Liu, Quantum correlations in spin models, Annals of Physics 326, 2694 (2011).

47) J. Yang, Q. L. Dong, Z. T. Jiang, and J. Zhang, Electronic energy band structures of carbon nanotubes with spin-orbit coupling interaction, Acta Physics Sinica, 60, 075202 (2011).

48) Z. T. Jiang, C. L. Yu, R. M. Zhao, J. Lu, and Q. Z. Han, Quantum transport through a transverse quantum-dot shuttle, Physical Review B 83, 195308 (2011).

49) G. F. Zhang, Z. T. Jiang, and A. Abliz, Measurement-induced disturbance and thermal entanglement in spin models, Annals of Physics 326, 867 (2011).

50) J. Yang, Q. L. Dong, Z. T. Jiang, and J. Zhang, The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model, Chines Physics B 19, 127104 (2010).

51) Z. T. Jiang, Y. N. Yang, and Z. J. Qin, Influences of a side-coupled triple quantum dot on Kondo transport through a quantum dot, Communications in Theoretical Physics 54, 952 (2010).

52) Z. Wang, F. Feng, Z. J. Zhao, B. J. Yan, Y. L. Li, Z. T. Jiang, H. Chen, K. Shi, and Z. Han, Effects of assisting and sputtering ion current on ion beam assisted deposition textured yttria stabilized zirconia buffer layers of coated conductors, Applied Surface Science, 257, 1769 (2010).

53) Z. T. Jiang, Kondo transport through a quantum dot coupled with side quantum-dot structures, Chinese Physics B 19, 077307 (2010).

54) J. Liu(博士生), Z.T. Jiang(通讯作者), and B. Shao, Local measurement of the entanglement between two quantum-dot qubits, Physical Review B 79, 115323 (2009).

55) Z. T. Jiang, J. Yang, Y. Wang, X. F. Wei, and Q. Z. Han, Transient and stationary transport properties of a three-subring quantum-dot structure, Journal of Physics: Condensed Matter 20(44), 445216 (2008).

56) Z. T. Jiang and Q. Z. Han, Quantum coherent transport through a quadruple quantum-dot structure with one continuous channel and two concrete channels, Physical Review B 78(3), 035307 (2008).

57) Z. T. Jiang, J. Yang, and Q. Z. Han, Quantum measurement of dynamic qubit information by a double quantum-dot detector, Journal of Physics: Condensed Matter 20(7), 075210 (2008).

58) Z. T. Jiang and Q. F. Sun, Quantum transport through circularly coupled triple quantum dots, Journal of Physics: Condensed Matter 19(15), 156213 (2007).

59) Z. T. Jiang, Q. F. Sun, and Y. P. Wang, Kondo transport through serially coupled triple quantum dots, Physical Review B 72(4), 045332 (2005).

60) Z. T. Jiang, Q. F. Sun, X. C. Xie, and Y. P. Wang, Do intradot electron-electron interactions induce dephasing? Physical Review Letters, 93(7), 076802 (2004).

61) Z. T. Jiang, J. Q. You, and H. Z. Zheng, Detector-induced dephasing in quantum-dot cellular automata qubit, Journal of Applied Physics, 94, 2142 (2003).

62) Z. T. Jiang, J. Q. You, S. B. Bian, and H.Z. Zheng, Influence of the transverse interdot coupling on transport properties of an Aharonov-Bohm structure composed by two dots and two reservoirs, Physical Review B 66, 205305 (2002).

63) Z. T. Jiang, J. Peng, J. Q. You, and H.Z. Zheng, Operation of the qubit based on photon-assisted tunneling in a coupled quantum-dot system and the influence of dephasing, Physical Review B 65, 153308 (2002).

64) 任彬, 江兆潭, 郭晖, 石峰, 程宏昌, 拜晓锋, 申志辉, 杨晓波, 周跃, 崔穆涵, 新型Ⅲ族氮化物日盲紫外变像管的研制及导弹逼近告警系统作用距离估算. 兵工学报, 2017, (05): 924-931.

65) 苏巧智; 韩清珍; 高锦花; 温浩; 江兆潭, g-C3N4表面结构的第一性原理研究. 计算机与应用化学, 2017, 34(04): 269-274.

66) 高锦花, 韩清珍, 苏巧智, 温浩, 江兆潭, Aun(n="2–60)的结构及其性能的理论研究." 计算机与应用化学, 2017, 34(03): 183-187.

67) 李彦辉, 江兆潭, 庆宏, 纳米技术瞄准疾病诊疗. 生命科学仪器, 2016, 14(Z1): 18-22.

68) 任彬, 石峰, 郭晖, 江兆潭, 程宏昌, 焦岗成, 苗壮, 冯刘. NEA GaN光电阴极第一性原理研究. 红外与激光工程, 2015, 44(09): 2752-2756.

69) 江兆潭,孙庆丰,谢心澄,王玉鹏.点内电子-电子库仑作用会引起退相干么? 物理, 2005(03):181-184.

70) 杨杰, 董全力, 江兆潭, 张杰, 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011(07):075202.

71) 江兆潭,杨杰,王玉,魏贤凤,张杰,环状耦合三量子点结构的电子输运性质. 北京理工大学学报 29, 373 (2009).

72) 江兆潭,刘伟,杨富华,游建强,李树深,郑厚植, 横向点间耦合对双量子点Aharonov-Bohm结构输运性质的影响, 半导体学报 24(Z1), 38 (2002).

73) 王传奎,江兆潭,Y型量子线中电子弹道输运性质,半导体学报 22,283 (2001).

74) 王传奎,江兆潭,一类弯曲量子线的量子束缚态, 物理学报 49,1574 (2000).

75) 江兆潭,王传奎,一种确定束缚态的数值方法, 山东师大学报(自然科学版), 14, 381 (1999).

社会公共事务

目前担任中国的《物理学报》、《Chinese Physics B》、《理论物理通讯》、《计算物理》等杂志、英国物理学会的《Journal of Physics: Condensed Matter》、《Nanotechnology》、《New Journal of Physics》等杂志、美国AIP的《Appl. Phys. Lett.》、《J. Appl. Phys.》等杂志的审稿工作。国家自然科学基金通讯评议专家,北京市自然科学基金重点项目通讯和会评专家,中国博士后基金评审专家、国家留学基金委通信评议专家、教育部学位评议中心博士和硕士论文通讯评议专家、教育部学位评议中心博士学位论文抽检通讯评议专家等。

学生招收和培养

每年拟招收硕士生、博士生、博士后2-3人。目前已毕业博士生5名,硕士生15名(课题组是一个激情进取、温馨友爱、严肃活泼的快乐家庭,这里不仅关注学习科研,还关注做人做事,让人生最珍贵的青春在这里绽放而不虚度年华,秉承不放弃不抛弃,有难同当,课题组至今历届研究生都已顺利毕业,去向包括高校、研究所、企业、事业、银行、北京市中学等)。

热诚期待对凝聚态物理、理论物理和计算物理等方向感兴趣的同学加入课题组,这里将为你提供一流的研究条件、经费支持和有竞争力的劳务补贴。首先享有学校的正常补助(以学校规定为准);其次还有本课题组的额外补助:硕士生的补助为每月1800元起【800元/每月(导师补助)+1000元/月(校企实验室补助)】;博士生的补助为每月2200元起【1200元/每月(导师补助)+1000元/月(校企实验室补助)】。