理论物理系

ALL

尚江伟

职称: 研究员/长聘副教授

联系电话:

学系: 理论物理系

E-mail: jiangwei.shang[AT]bit.edu.cn

通讯地址: 北京市海淀区北京理工大学物理学院,中教710; 北京市房山区北京理工大学物理学院,理学楼A414

教育经历

2010.07 – 2014.02 新加坡国立大学量子科技研究中心,博士;导师:Prof. Berthold-Georg Englert
2008.08 – 2008.12 美国加州大学圣塔芭芭拉分校物理系,交流访问
2006.08 – 2010.06 新加坡国立大学物理系,理学学士(一等荣誉学位)

工作经历

2022.07 – 至今 北京理工大学物理学院,研究员/长聘副教授
2018.01 – 2022.06 北京理工大学物理学院,副研究员/预聘助理教授
2016.11 – 2017.12 德国锡根大学,博士后研究员;合作导师:Prof. Dr. Otfried Gühne
2014.02 – 2016.10 新加坡国立大学量子科技研究中心,博士后研究员;合作导师:Prof. Berthold-Georg Englert

科研方向

量子信息和量子计算,主要包括量子层析、量子验证、量子测量、量子纠缠的判定和度量、非局域关联、算法的研究等。

学术成就

Google Scholar: https://scholar.google.com/citations?hl=en&user=Ur3D0GIAAAAJ

近期代表性论文:

[1] Y. Li and J. Shang, “Geometric mean of bipartite concurrences as a genuine multipartite entnaglement measure,” Phys. Rev. Research 4, 023059 (2022).

[2] X. Yan, Y.-C. Liu, and J. Shang, “Operational detection of entanglement via quantum designs,” Ann. Phys. (Berlin) 534, 2100594 (2022).

[3] X.-D. Yu, J. Shang, and O. Gühne, “Statistical methods for quantum state verification and fidelity estimation,” Adv. Quantum Technol. 5, 2100126 (2022). (Invited Review)

[4] Q. Zeng, J. Shang, H. C. Nguyen, and X. Zhang, “Reliable experimental certification of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Research 4, 013151 (2022).

[5] R.-Q. Zhang, Z. Hou, J.-F. Tang, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Efficient experimental verification of quantum gates with local operations,” Phys. Rev. Lett. 128, 020502 (2022). (Editors' Suggestion)

[6] Y.-C. Liu, Y. Li, J. Shang, and X. Zhang, “Verification of arbitrary entangled states with homogeneous local measurements,” arXiv:2208.01083.

[7] W. Li, R. Han, J. Shang, H. K. Ng, and B.-G. Englert, “Sequentially constrained Monte Carlo sampler for quantum states,” arXiv:2109.14215.

[8] Y.-C. Liu, J. Shang, and X. Zhang, “Efficient verification of entangled continous-variable quantum states with local measurements,” Phys. Rev. Research 3, L042004 (2021). (Letter)

[9] Y.-C. Liu, J. Shang, R. Han, and X. Zhang, “Universally optimal verification of entangled states with nondemolition measurements,” Phys. Rev. Lett. 126, 090504 (2021).

[10] Z. Li, Y.-G. Han, H.-F. Sun, J. Shang, and H. Zhu, “Verification of phased Dicke states,” Phys. Rev. A 103, 022601 (2021).

[11] Y.-C. Liu, J. Shang, X.-D. Yu, and X. Zhang, “Efficient verification of quantum processes,” Phys. Rev. A 101, 042315 (2020).

[12] J.-F. Tang, Z. Hou, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Experimental optimal orienteering via parallel and antiparallel spins,” Phys. Rev. Lett. 124, 060502 (2020).

[13] X.-D. Yu, J. Shang, and O. Gühne, “Optimal verification of general bipartite pure states,” npj Quantum Inf. 5, 112 (2019).

[14] Y.-C. Liu, X.-D. Yu, J. Shang, H. Zhu, and X. Zhang, “Efficient verification of Dicke states,” Phys. Rev. Applied 12, 044020 (2019).

[15] J. Y. Sim, J. Shang, H. K. Ng, and B.-G. Englert, “Proper error bars for self-calibrating quantum tomography,” Phys. Rev. A 100, 022333 (2019).

[16] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, “Quantifying quantum resources with conic programming,” Phys. Rev. Lett. 122, 130404 (2019).

[17] G. Sentís, J. N. Greiner, J. Shang, J. Siewert, and M. Kleinmann, “Bound entangled states fit for robust experimental verification,” Quantum 2, 113 (2018).

[18] J. Shang, A. Asadian, H. Zhu, and O. Gühne, “Enhanced entanglement criterion via symmetric informationally complete measurements,” Phys. Rev. A 98, 022309 (2018). (Editors' Suggestion)

[19] J. Shang and O. Gühne, “Convex optimization over classes of multiparticle entanglement,” Phys. Rev. Lett. 120, 050506 (2018).

[20] Z. Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D. Wu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Deterministic realization of  collective measurements via photonic quantum walks,” Nature Commun. 9, 1414 (2018).

[21] J. Shang, Z. Zhang, and H. K. Ng, “Superfast maximum-likelihood reconstruction for quantum tomography,” Phys. Rev. A 95, 062336 (2017).

招生信息

欢迎对量子信息和计算感兴趣的本科生和研究生加入,每年拟招收硕士/博士研究生1~2名,欢迎国内外同行访问合作!